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Abstract. The deuteron form factors are calculated in the framework of the relativistic nucleon-meson
dynamics, by means of the explicitly covariant light-front approach. The inflluence of the nucleon electro-
magnetic form factors is discussed. At Q2 ≤ 3 (GeV/c)2 the prediction for the structure function A(Q2)
and for the tensor polarization observable t20 are in agreement with the recent data of CEBAF/TJNAF.
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1 Introduction

Recently the first experimental data obtained at Thomas
Jefferson National Accelerator Facility (former CEBAF)
on the deuteron structure function A and tensor polariza-
tion t20, measured in the elastic ed scattering, have been
reported [1–4]. They are rather precise and correspond
to a maximum momentum transfer of 6 (GeV/c)2. Since
in the ed collision the deuteron gets from the electron
a momentum comparable with the deuteron mass, these
data are probing the trully relativistic dynamics inside the
deuteron.

We present in this paper the calculations of the
deuteron form factors performed in the framework of the
explicitly covariant version of the Light-Front Dynamics
(LFD). Some preliminary results were published in [5]. We
give here the details of our approach, discuss the influence
of the different choices of nucleon electromagnetic form
factors parametrization and compare our results with the
reported experimental data.

In our calculations we assume the deuteron structure
to be determined by the relativistic nucleon-meson dy-
namics. Namely, we suppose that the nucleons in the
deuteron interact by exchanging relativistic mesons. We
take the same set of mesons and parameter values used in
the construction of the Bonn potential [6]. However, we
do not make any nonrelativistic potential approximation
and calculate the one-boson-exchange kernel in relativistic
form, as it appears from field theory.

In the momentum tranfer region scanned in TJNAF,
the relativistic effects related to the nucleons motion, to
a e-mail: carbonel@isn.in2p3.fr
b e-mail: karmanov@sci.lebedev.ru

the spin rotations and to the retardation of the exchanged
mesons, should manifest themselves in full measure and be
of crucial importance in describing the data. Therefore we
believe that their main part can be properly taken into ac-
count even in an approximate relativistic calculation. On
the other hand, it is important to work in an approach
which provides a clear physical interpretation of the in-
corporated effects.

The covariant version of the Light-Front Dynamics has
been recently reviewed in [5]. In this approach, the state
vector is defined on the light-front plane of general posi-
tion ω·x = 0, where ω is a four-vector such as ω2 = 0.
This restores the relativistic covariance lost in the stan-
dard light-front approach which is obtained as a particular
case for ω = (1, 0, 0,−1). The relativistic wave functions
– the Fock components of the state vector – are the clos-
est couterparts of the nonrelativistic ones. This allows one
to benefit from the knowledge of the nonrelativistic wave
functions and to incorporate selfconsistently the relativis-
tic effects. Using the light-front plane leads to significant
simplifications due to the absence of vacuum fluctuations.
The diagram technique is a three-dimensional one and can
be interpreted in terms of time-ordered physical processes.
Therefore the selection of the diagrams contributing to the
kernel or to the form factors, whose numerical estimation
is rather difficult in any approach, can be supported by
the intuitive understanding of the corresponding physical
process. All that allows, in a given relativistic dynamics,
to carry out the calculations on a satisfactory level of con-
fidence.

We mention also few other approaches to calculate the
relativistic wave function and the deuteron electromag-
netic form factors. In the standard version of LFD, defined
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on the plane t+ z = 0, these form factors were calculated
in [7–10]. The results obtained in [11,12] are based on
the Bethe-Salpeter approach and the works [13,14] use a
three-dimensional reduction of the Bethe-Salpeter func-
tion – the Gross wave function [15].

In Sect. 2 we present the relativistic deuteron wave
function on the light front. In Sect. 3 the electromag-
netic vertex of the deuteron in the impulse approximation,
based on the one-body electromagnetic nucleon current,
is discussed. In Sect. 4 we discuss the contact (instan-
taneous) interaction, corresponding to the NNBγ vertex
(B is an exchanged meson) which is a correction to the
one-body current. In Sect. 5 we explain how to extract
the form factors, separating them from the nonphysical
contributions. Section 6 is devoted to the evaluation of
the nucleon electromagnetic form factors influence in the
deuteron observables. Section 7 contains a comparison of
our results with the experimental data and concluding re-
marks.

2 Wave function

The wave functions are the Fock components of the state
vector defined on the light-front plane ω·x = 0. The ex-
plicit covariance allows one to construct the general form
of the light-front wave function for a system with a given
spin. The relativistic deuteron wave function on the light
front contains six spin components, in contrast to two
components – S and D-waves – in the nonrelativistic case.
Its general form is given in [16,17]. Below we will keep
only three dominating components:

Ψσ2σ1
λ =

√
meνλ(p)ūσ2(k2)φνUcūσ1(k1),

φν = ϕ1
(k1 − k2)ν

2m2
+ ϕ2

1
m
γν

−ϕ5
i

m2ω·pγ5εναβγk
α
1 k

β
2ω

γ , (1)

where p and k1,2 are the on mass shell deuteron and the
nucleon momenta, eλν (p) is the deuteron polarization vec-
tor, ūσ(k) is the nucleon spinor, Uc is the charge conju-
gation matrix. We notice that the wave function defined
on the light-front plane depends on the orientation of this
plane through the argument ω.

In the system of reference where k1 +k2 = 0 the func-
tion (1) obtains the more transparent form:

Ψλσ2σ1
(k,n) =

√
mw†σ2

ψλ(k,n)σyw†σ1
,

ψ(k,n) = f1
1√
2
σ + f2

1
2

(
3k(k·σ)
k2

− σ
)

+f5

√
3
2
i

k
[k × n], (2)

where k is the value of k1 in this system of reference,
n is the direction of ω in this system, wσ is the two-
component nucleon spinor. The scalar functions fi depend
on the scalars k ≡ |k| and z = n·k/k. One can find a
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Fig. 1. Deuteron wave functions components in LFD

special representation [17] in which the wave function (1)
obtains the form (2) in arbitrary system of reference. The
components ϕi in (1) and fi in (2) are linearly related
with each other [5,17].

The wave function (1) was calculated in [17] in a per-
turbative way incorporating the full relativistic one-boson
exchange (OBE) kernel found in LFD, with the corre-
sponding nonrelativistic wave function as zero order ap-
proximation. The results, taken from [17], are displayed in
Fig. 1. This calculation can be considered as the perturba-
tion theory developed in terms of the difference between
the relativistic kernel and the nonrelativistic potential. For
the OBE kernel the set of mesons, coupling constants and
form factors corresponding to the Bonn model [6] were
used. The solution thus obtained is approximate in two
ways: first for its perturbative character does not provide
an exact solution of the LFD equation and second be-
cause the parameters of the OBE kernel were kept to their
original values i.e. were not fitted in the LFD relativistic
framework. The accuracy of our solution in reproducing
the low energy deuteron observables was estimated at the
level of 20% in norm.

In nonrelativistic region of k, components f1 and f2

found this way turn into the usual S- and D-waves. How-
ever, starting from k ≈ 0.5 GeV/c, component f5 domi-
nates over all other components, including f1 and f2. The
other components f3,4,6 remain negligible in the momen-
tum range shown in Fig. 1 and have not been included in
calculating the deuteron form factors.
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Fig. 2. Electromagnetic vertex of the deuteron

The physical meaning of this dominating extra com-
ponent has been clarified [18] by comparing, in 1/m ap-
proximation, the analytical expression for the amplitude of
the deuteron electrodisintegration near threshold with the
nonrelativistic one, including meson exchange currents.
For the isovector transition, in the region where the so
called pair term with the pion exchange dominates, this
component (together with a similar component in the scat-
tering state) automatically incorporates 50% of the pair
term contribution and therefore dominates too. Another
50% is given by the contact interaction (see below).

3 Electromagnetic vertex

The electromagnetic vertex Jρµν we use to calculate the
deuteron form factors corresponds to the sum of the im-
pulse approximation (IA) (Fig. 2) and of the contact in-
teraction (C) (Fig. 3) which takes partially into account
the two-body current:

Jρµν = Jρµν(IA) + Jρµν(C). (3)

These contributions are explained in what follows.
The deuteron IA electromagnetic vertex is shown in

Fig. 2. The dashed line is associated with a fictitious par-
ticle – the so called spurion. It reflects the fact that, al-
though all the momenta are on the corresponding mass
shells, the wave function is off energy shell, and therefore
there is no any conservation law between all the compo-
nents of the nucleon and the deuteron four-momenta. The
spurion momentum just absorbs their nonzero difference
and one has k1 +k2−p = ωτ . To avoid misunderstanding,
we emphasize that the spurion line does not imply the
presence of an extra particle in the intermediate state in
Fig. 2 which contains two nucleons only.

The electromagnetic amplitude in the impulse approx-
imation is derived by applying the rules of the graph tech-
niques [5] to Fig. 2. It has the form:

〈λ′|Jρ(IA)|λ〉 = e∗µλ′ (p
′)Jρµν(IA)eνλ(p) ,

Jρµν(IA) =
m

(2π)3

∫
Tr[φ′µ(k̂′2 +m)Γ ρ(k̂2 +m)φν(k̂1 −m)]

× d3k1

(1− x)22εk1

, (4)

where x = ω·k1/ω·p. The wave function φν =
φν(k1, k2, p, ωτ) given by (1) corresponds to the deuteron
initial state, while φ′µ = φµ(k1, k

′
2, p
′, ωτ ′) corresponds to

its final state. Γρ is the electromagnetic vertex of the nu-
cleon:

Γ ρ = F1γ
ρ +

iF2

2m
σραqα, (5)

F1 and F2 being the nucleon elecromagnetic form factors.
The expression for the trace in (4) is obtained as fol-

lows. To each nucleon line in Fig. 2 we associate the LFD
nucleon propagator, with the NNγ vertex we associate
expression (5), and with d − NN vertices the deuteron
wave functions. We get in this way the following product
of spin matrices:

e∗µλ′ (p
′)
{

[γ0φ
′
µUcγ0]†(k̂′2 +m)Γ ρ(k̂2 +m)φνUc

}
βα

× eνλ(p)(k̂1 +m)βα. (6)

Factor {. . .}βα in (6) corresponds to the upper line of
the diagram and the factor (k̂1 +m)βα corresponds to the
lower line. We attach the deuteron wave function to the
upper one. We keep in (6) the matrix indices α and β
explicitly. Since both nucleon lines are passed in the same
direction, the order of indices β, α is the same. This means
that one of the factors in (6) (we take the second one) is a
transposed matrix. The factor [γ0φ

′
µUcγ0]† originates from

the conjugated final deuteron wave function:(
ū(k′2)φ′µUcū(k1)

)† = u(k1)[γ0φ
′
µUcγ0]†u(k′2)

= −u(k1)φ̄′µu(k′2), (7)

where φ̄ = γ0φ
†γ0. With the wave function (1) we get:

[γ0φ
′
µUcγ0]† = −Ucφ′µ

and, hence, obtain the factor:

−Uc(k̂1 +m)tUc = (k̂1 −m),

that gives the trace in (4). A more detailed derivation of
(4) by means of the LFD graph technique can be found in
[5]. Next section is devoted to the derivation of the contact
contributions.

4 The contact interaction

A peculiarity of the LFD is the existence, in addition to
the impulse approximation, of the so called instantaneous
(or contact) interaction in the NNBγ vertex, where B is
any of the mesons π, ρ, . . ., building the NN potential. Its
contribution to the electromagnetic vertex in g2 order is
shown in Fig. 3. The cross on a fermion line means that
this line is not to be associated with a propagator, but
with a factor proportional to ω̂ = ωµγ

µ. In the standard
approach this is the well known instantaneous interaction
vertex γ†. The nucleon electromagnetic vertex Γρ is deter-
mined, as usual, by the two nucleon electromagnetic form
factors given in (5).
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Fig. 3. Contact term contributions to the electromagnetic in-
teractions with deuteron

In evaluating the contact amplitude, we have taken
into account the sum over all six mesons contributing to
the Bonn potential, with the parameters used in the Bonn
model [6]. This amplitude incorporates partially the two-
body currents. In principle more complicated diagrams,
of order higher than g2, may also contribute. Since our
wave function takes into account corrections associated
with the first degree of g2, we keep the same order for
the electromagnetic vertex. This means that we consider
only the diagrams of Fig. 3 and in calculating these dia-
grams we omit component f5 in the wave function, since
its contribution multiplied by the contact interaction is of
higher order than g2. To calculate the effects beyond the
g2 order, one has also to take into account the higher or-
der irreducible contributions to the OBE kernel. One can
expect that these contributions are incorporated in this
kernel on a phenomenological level by an appropriate fit
of its parameters (coupling constants, meson masses and
cutoff parameters). However, this is not the case for the
electromagnetic vertex.

The contact amplitude is given by the sum of two terms
which differ by the relative time order of the contact and
the electromagnetic vertices:

Jρµν(C) = Jρµν(C)|left + Jρµν(C)|right. (8)

The Jρµν(C)|left term corresponds to the sum of dia-
grams (a) and (b) in Fig. 3, which differ from each other
by the relative time order of the meson vertices. Both
of them have the contact vertex on the left hand side of
the electromagnetic one. The opposite order is assumed in
Jρµν(C)|right which corresponds to diagrams (c) and (d) in
Fig. 3. In addition one has to take the sum over all mesons
contributing to the interaction.

The explicit formulas for calculating these terms are a
litle bit cumbersome and are given in Appendix for inter-
ested readers.

5 Calculating form factors

The next step consists in extracting the deuteron form
factors from the electromagnetic vertex Jρµν . As already
mentioned, in contrast to the wave function which is al-
ways off energy shell, the on-shell amplitudes should not
depend on the light-front plane orientation. However, in
practice, due to the incompatibility of the transformation
properties of the approximate current and wave function,
the nonphysical ω dependence survives in the on-energy
shell deuteron electromagnetic vertex. Thanks to covari-
ance, the general form of this dependence can be found
explicitly [19]:

Jρµν = P ρ
[
F1gµν + F2

qµqν
2M2

]
+ G1(gρµqν − gρνqµ)

+ B1
M2ωρgµν

2ω·p +B2
ωρqµqν

2ω·p + · · ·

+ B8q
ρ qµων + qνωµ

2ω·p . (9)

Here q = p′ − p, P = p+ p′, with p and p′ the initial and
final deuteron momenta. As an example, we keep in (9)
three ω-dependent terms only, though the total number of
them is eight. Since we assume ω·q = 0 (what corresponds
to q+ = 0 in the standard approach), all the form factors
in (9) depend on Q2 = −q2 only.

The ω-dependence of the wave function is not the only
source of the nonphysical contributions B1−8. With an n-
independent wave function (neglecting f5 in (2)) we still
get the ω-dependent deuteron electromagnetic vertex. On
the contrary, the physical form factors F1,F2,G1 do not
depend on ω even with an ω-dependent wave function.
We emphasize that the physical ω-dependent extra com-
ponents in the wave function (2) and the nonphysical ω-
depending structures in (9) are present not because of the
covariant formulation of the LFD. Their counterparts ap-
pear in the non-covariant light-front approach too but the
covariant approach allows to indicate them explicitly.

The explicit formulas to extract the physical form fac-
tors F1,F2,G1 from the electromagnetic vertex and to sep-
arate them from nonphysical contributions B1−8 were de-
rived in [19]. As an example, we give here the formula for
F1 only:

F1 = Jρµν
ωρ

2ω·p

×
[
gµν − qµqν

q2
− Pµων + P νωµ

2ω·p + P 2 ωµων

4(ω·p)2

]
. (10)

The contraction with ωρ in (10) corresponds in the stan-
dard approach to the component J+

µν . The expression for
F2 is proportional to the same contraction. However the
expression for G1 contains not only the contraction with
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ωρ but also others terms. Hence, the J+ component is not
enough to find G1.

One can easily check, using ω·q = 0, that one has for
the nucleon electromagnetic vertex (5) ω̂ωρΓ ρ = ωρΓ

ρω̂ =
0. Here ω̂ appears from the contact interaction, the con-
traction ωρΓ

ρ is the result of (10). Therefore the contact
terms do not contribute to F1,F2, due to the contraction
with ωρ in (10). They contribute only to G1. The form
factors found this way are still not exact, but they are
separated from the non-physical ones B1−8. As shown in
[19] and in [20], this separation is important, since the
admixture of Bi can considerably change the results.

After calculating traces and contracting tensors in (10)
for F1 (and similar expressions [5] for F2 and for G1) we
obtain the integrand depending on the scalar products of
the four-vectors ω, k1, k2, k′1, k′2, p, p′, q with each other.
In their turn, these scalar products, as well as the argu-
ments of the wave functions, are expressed through the
integration momenta and the momentum transfer. Their
explicit kinematical formulas are given in [5]. The inte-
grands also contain the scalar products with ω but after
integration this dependence disappears.

By this way, substituting Jρµν in (10) (and in similar
expressions [19] for F2,G1), we find the analytical expres-
sions of the form factors integrands. Then we carry out the
numerical integration which, for the contact terms (two-
loop), is 6-dimensional.

6 Influence of the nucleon EM form factors

Together with the deuteron wave function, an essential
ingredient in these calculations are the nucleon electro-
magnetic form factors (NEMFF). The results presented
in [5] were obtained with the dipole parametrization
taken from Bilenkaya et al. [21] denoted hereafter by
BKL. We analyse in what follows the influence of differ-
ent NEMFF parametrizations in calculating the deuteron
structure function within the same theoretical scheme.
The parametrizations we consider, used in similar calcu-
lations found in the literature [28,12,14,27,26], are those
given by Galster et al. [22], Hohler et al. [23], a combi-
nation of Simon et al. for proton and Platchkov et al.
for neutron (SP) [24] and the more recent publication of
Mergell et al. (MMD) [25]. The comparison [29] of the
proton (GpE , G

p
M ) and neutron (GnE , G

n
M ) charge and mag-

netic form factors with the existing experimental data [30]
is shown in Fig. 4 . The values of the neutron charge form
factor have been squared to account for the results re-
ported in [30]. A first sight to this figure shows that some
of these form factors have been apparently determined in
the low momentum region and can not be used above 1-2
(GeV/c)2. The more adequated parametrization covering
the whole momentum region seems to be MMD [25], which
will be adopted in our calculations. It provides an accept-
able description for all the form factors although some
variations can not be excluded due to the inaccuracy of
the existing measurements, especially for the neutron form
factor (see below). Any comparison between the theoreti-

cal and experimental results has to be understood in the
context of this uncertainty that we would like to estimate.

The influence of different NEMFF parametrizations on
the deuteron structure function A(Q2) is shown in Fig. 5.
The results in Fig. 5(a) are fully non relativistic whereas
those in 5(b) correspond to LFD impulse approximation.
The choice of the NEMFF has small influence at low mo-
mentum transfer. For instance at Q2 = 0.5 (GeV/c)2,
the deviation in the nonrelativistic structure function A is
≈ 15%. This deviation increases with Q2 and reaches al-
ready a factor two at Q2 = 2 (GeV/c)2 between BKL and
SP parametrizations. The difference becomes dramatic for
the last measured values Q2 = 6 (GeV/c)2 where there is
one order of magnitude in the structure functions A(Q2)
calculated using BKL or Hohler parametrizations. It is
worth noticing however that the Galster and MMD sets
lead to close results in all the momentum range. Their
difference in the LFD-IA relativistic calculation of A re-
mains at the level of 10 % for Q2 ≤ 10 (GeV/c)2. Sim-
ilar deviations have been found in the structure func-
tion B.

As one can see from Fig. 4, the neutron electric form
factor GnE contains the greatest uncertainty. To estimate
the influence of this uncertainty, we have considered for
Q2 = 2−4 (GeV/c)2 the maximal GnE

2 values compatible
with the error bars, which are a priori not excluded by the
experimental data although they considerably differ from
all fits. The values of A(Q2) obtained with such a modifi-
cation exceed by 20-30% those obtained with the original
MMD parametrization. From these considerations it
follows that i) the comparison between different calcula-
tions is only meaningful when the same parametrization
of NEMFF is used and ii) the comparison between
a theoretical prediction and the measured deuteron
form factors is limited by the considerable uncertainties
implied by the poor knowledge of the NEMFF for Q2 > 1
(GeV/c)2.

7 Results and discussion

We present in this section the comparison of the deuteron
structure functions and tensor polarization observable
with the last measured values. In terms of the deuteron
form factors these observables read

A(q2) = F 2
C(q2) +

8
9
η2F 2

Q(q2) +
2
3
ηF 2

M (q2) , (11)

B(q2) =
4
3
η(1 + η)F 2

M (q2) . (12)

t20

(
A(q2) + tan2 1

2
θ B(q2)

)
= − 1√

2

[
8
3
ηFCFQ +

8
9
η2F 2

Q +
1
3
η

×
(

1 + 2(1 + η) tan2 1
2
θ

)
F 2
M

]
, (13)
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where

FC = −F1 −
2η
3

[F1 + G1 −F2(1 + η)] ,

FM = G1 ,

FQ = −F1 − G1 + F2(1 + η) ,

and η = Q2/4M2. In comparing our calculations with the
data we should first emphasize that, though the theoreti-
cal framework we use – the light-front dynamics – is fully
selfconsistent, the validity of our perturbative method to

evaluate the wave function is restricted to relative nucleon
momenta k smaller than the nucleon mass m. Since in
a form factor calculation the momentum transfer is dis-
tributed between two deuteron vertices, the initial and
final ones, this value of k corresponds approximately to
the momentum transfer Q2 ≤ (2m)2 ≈ 3.5 (GeV/c)2. In
absence of subtle cancellations increasing the uncertainty
in the theoretical predictions, we can expect a reasonable
description of the experimental data in this momentum
region.
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In Fig. 6 the structure function A(Q2) is shown to-
gether with the experimental points recently obtained at
TJNAF (Hall C in filled circles [1] and Hall A in opaque
triangles up [2]). The dashed curve corresponds to the
non-relativistic impulse approximation with the S- and D-
waves of the Bonn-QA wave function [6]. The dot-dashed
line is also calculated in the impulse approximation but
using the light-front formalism with relativistic deuteron
components f1 and f2 and the f5 component in first de-
gree only. The solid line incorporates, in addition, the con-
tact terms which turn to have small influence in this ob-
servable. We can see a good agreement until Q2 = 2.5
(GeV/c)2, a momentum region where the departure from
a non relativistic description reaches one order of mag-
nitude. It is worth noticing that this agreement is found
with the LFD wave function alone, i.e. without explicitly
including any MEC diagrams. However, as it has been
already mentioned, the extra component f5 accounts for
the so called pair terms in the deuteron electrodisintegra-
tion amplitude [18]. We remark that a systematic devia-
tion seems to manifest above 3 (GeV/c)2. This excess is
smoothly increasing with increase of Q2. However, this is
the region where the perturbative calculation is hardly re-
liable, since the deuteron wave function appears in A(Q2)
in the fourth degree and a 50% correction may change
the value by a factor 5. Besides, as it has been shown
above, at Q2 > 2 (GeV/c)2 the uncertainty coming from
the NEMFF is also high.

The same agreement is seen in the deuteron polariza-
tion observable t20 displayed in Fig. 7 using the same
drawing conventions. Again a sizeable effect of the rela-
tivistic corrections is properly taken into account in our
calculations although the actual error bars are quite com-
fortable.

The calculated structure function B(Q2) is shown in
Fig. 8, using the same drawing conventions, together with
the experimental data from [31]. Comparing the B(Q2)
results with those of A(Q2) and t20, one can see a con-
siderable deviation of our B calculation from the data,
especially in the region of the minimum, as well as high-
est sensitivity to the different approximations. This min-
imum corresponds to the zero of the deuteron magnetic
form factor FM , and a small shift on this value drastically
changes the value of B(Q2) in its neighborhood. It is im-
portant to emphasize that the zero of FM which exists in
a nonrelativistic calculation, disappears for the relativistic
f1, f2 and appears again when f5 is taken into account [5].
In a relativistic framework this minimum is thus a con-
sequence of a delicate cancellation between the f5 contri-
bution with the contributions of f1 and f2. None of these
f1, f2, f5 components has been calculated with enough ac-
curacy in our perturbative approach. Therefore we cannot
pretend to a detailed description of B(Q2) in this region.

The situation is different for A(Q2) and t20. Figure
9 shows the relative contributions of the three deuteron
form factors to these observables according to equations
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Fig. 6. The structure function A(Q2) of the deuteron with MMD nucleon form factors. The curves are explained in the text
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Fig. 9. The contributions of the different deuteron form factors (FC , FQ, FM ) to the structure function A(Q2) (a) and t20 (b)

(11) and (13). One can see that their values are dominated
by the charge and quadrupole form factors FC and FQ,
whereas the contribution of FM , containing the highest
uncertainty, is suppressed.

Taking into account the same order of accuracy, i.e.,
g2, which was kept in the calculation of the wave function,
we get a good description of the data on t20 as well as of
A(Q2) in the same region of the momentum transfer, up
to 2 (GeV/c)2. The relativistic effects in f1, f2 and the
contribution of f5 are important to achieve this good de-
scription. The contribution of the contact term to A(Q2)
and t20 is small, since, as noted above, it contributes to
FM only, whereas for B it is small in the momentum trans-
fer region shown in Fig. 8 but increases at higher mo-
menta (e.g. by a factor 2 at Q2 = 6 (GeV/c)2 ). These
results show that the relativistic effects in the deuteron
wave function, including the extra component f5, and in
the deuteron electromagnetic vertex make considerable in-
fluence on the deuteron form factors. Note that the effect
of incorporating f5 on t20 is qualitatively similar to that
obtained when adding the contribution of the pair current
in non-relativistic calculations [27].

We should finally emphasize that the results presented
in this section have been obtained without fitting any new
set of parameters, neither in the nucleon-meson form fac-
tors nor in the NN interaction kernel, which was taken as
it is given in [6].

The agreement of our calculations with the experimen-
tal data, as well as with some other calculations carried

out in the framework of meson-nucleon dynamics (see e.g.
[7]–[27]), shows that the deuteron structure at small dis-
tances is understood rather well within this theoretical
framework. It is a remarkable fact that probing distances
of the order of 0.1 fm, at which quarks effects should man-
ifest themselves in their full glory, could be accounted
by the relativistic nucleon-meson dynamics and the phe-
nomenological nucleon form factors.

The parameters of the effective nucleon-meson La-
grangian, fixed by fitting the NN experimental data,
should be in principle derived from QCD, what is a sepa-
rate problem. This allows us to make the following general
conclusion: at least in what concerns the deuteron, the rel-
ativistic nuclear dynamics can be developed independently
of its derivation from QCD.

Our calculations can be improved in many respects. An
exact solution of the equation for the deuteron is neces-
sary. Besides the non-perturbative calculation, it implies
the determination of the NN kernel parameters in the
framework of the light-front equations. This requires also
a careful treatment of higher order contributions to the
kernel. Finally, the calculation of electromagnetic observ-
ables should include higher Fock states (NNπ, etc.) and
the meson exchange currents which are not included in
the wave function components, like those corresponding
to the interaction of the photon with the intermediate
mesons (ρπγ, . . .).

The improvement of the experimental data on the nu-
cleon EM form factors is also an urgent task.
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A Appendix: Contact amplitude

For a given meson, the contact amplitude corresponding
to the sum of diagrams (a) and (b) in Fig. 3 – left contact
term – has the form:

Jρµν |left = m

∫
Tr{(−Ucφ̄′µ)(k̂′2 +m)Γ ρ

×
(
− ω̂

2ω·k′2

)
V (k̂2 +m)φνUc

×[(k̂′1 +m)V (k̂1 +m)]t} 1
(µ2 +K 2)

× d3k1

(2π)3(1− x)2εk1

d3k′1
(2π)3(1− x′)2εk′1

, (14)

where x = ω·k1/ω·p, x′ = ω·k′1/ω·p. The factor (µ2 +
K 2) is the denominator of the meson propagator, which
is expressed in terms of the relative nucleon momenta. In
these variables K2 is given by

K 2 = (k ′ − k )2 − (n·k ′)(n·k)
(εk′ − εk)2

εk′εk

+
(
ε2
k′ + ε2

k −
1
2
M2

) ∣∣∣∣n·k ′εk′
− n·k

εk

∣∣∣∣ . (15)

In the time ordered graph technique, the analytical
expressions for the diagrams (a) and (b) in Fig. 3 differ by
the meson propagators. The modulus in (15) just take into
account this change of the meson propagator for different
time ordering of the vertices. Therefore expression (14)
with (15) for K 2 corresponds to the sum of graphs (a)
and (b).

Expression (14) is obtained similarly to the case of
the impulse approximation. The factor V stands for the
meson-nucleon vertex at the upper and lower lines. The
factor (−Ucφ̄′µ) appears from relation (7). Taking again
into account the fact that Uck̂t = −k̂Uc we get:

Jρµν |left =
m

27π6(ω·p)

∫
Tr{φ′µ(k̂′2 +m)Γ ρω̂V

×(k̂2 +m)φν(k̂1 −m)V c(k̂′1 −m)}

× 1
(µ2 +K 2)

1
(1− x′)

d3k

εk

d3k′

εk′
, (16)

where V c = UcV
tUc. We used the relation: ω·k′2 = (1 −

x′)ω·p. Instead of momenta k1,k2 we integrate in (16) over
the relative nucleon momenta k,k ′, using the relation:

d3k1

2(1− x)εk1

=
d3k

εk
=

d2R⊥dx

2x(1− x)
(17)

and similarly for k′1,k
′,R′⊥. These relative momenta are

the arguments of the initial and final deuteron wave func-
tions respectively.

The right contact term is obtained from (16) by the
replacement

Γ ρω̂V

(1− x′) →
V ω̂Γ ρ

(1− x)
(18)

In case of scalar (pseudoscalar) exchanges one should
put both for up and down vertices V = V c = g (V = V c =
igγ5). For the pseudoscalar exchange one can simplify the
contact terms by excluding γ5:

Jρµν |psleft = − m

27π6(ω·p)

∫
Tr{φ′µ(k̂′2 +m)Γ ρω̂

×(k̂2 −m)φ̃ν(k̂1 +m)(k̂′1 −m)}

× g2

(µ2 +K 2)
1

(1− x′)
d3k

εk

d3k′

εk′
, (19)

Jρµν |psright = − m

27π6(ω·p)

∫
Tr{φ̃′µ(k̂′2 −m)ω̂Γ ρ

×(k̂2 +m)φν(k̂1 −m)(k̂′1 +m)}

× g2

(µ2 +K 2)
1

(1− x)
d3k

εk

d3k′

εk′
, (20)

where φ̃ = γ5φγ5. The function φ̃ differs from φ, (1), by
changing the sign of ϕ2 (and also of ϕ4 and ϕ6 if they are
not neglected).

Let us now find the vertices V and V c for the vector
exchange. It is convenient to take them from the expres-
sion of the corresponding kernel which has the form [5]:

K =
∫
ū′2(gγα − f

2m
σα
′αi(k − ωτ1)α′)u2

×
[
−gαβ +

(k − ωτ1)α(k − ωτ1)β
µ2

]
×ū′1(gγβ +

f

2m
σβ
′βi(k − ωτ1)β′)u1

×δ((k1−k′1+ωτ1−ωτ)2−µ2)θ(ω·(k1−k′1))
dτ1
τ1−iε

+
∫
ū′2(gγα +

f

2m
σα
′αi(k − ωτ1)α′)u2

×
[
−gαβ +

(k − ωτ1)α(k − ωτ1)β
µ2

]
×ū′1(gγβ − f

2m
σβ
′βi(k − ωτ1)β′)u1

×δ((k′1−k1+ωτ1−ωτ ′)2−µ2)θ(ω·(k′1−k1))
dτ1
τ1−iε

,

(21)

k is the meson momentum. The coupling constant g stands
for the vector vertex ūγαu, whereas f corresponds to the
derivative coupling. The vector meson exchange generates
its own vector contact interaction, corresponding to the
cross on the vector meson line. This is an additional con-
tact interaction in the vertex NNγV . As indicated in [5],
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the contact term can be taken into account by the re-
placement, in the numerator, of the momentum k by the
difference k− ωτ , where ωτ is the momentum of the spu-
rion line connecting the ends of the vector meson line.
This replacement has been done in (21). The factor ωτ1
everywhere in (k − ωτ1) incorporates the contact terms
both for the vector meson exchange and for the deriva-
tive coupling. We express k in terms of the lower vertex
momenta:

k − ωτ1 = k1 − k′1 − ωτ for ω·(k1 − k′1) > 0
k − ωτ1 = k′1 − k1 − ωτ ′ for ω·(k′1 − k1) > 0 (22)

The first line of (22) corresponds to the first item in (21),
the second line corresponds to the second one.

By this way, we find the vector contact term (both the
left and the right one). It is convenient to represent it as
the sum of two contributions:

Jρµν |vector = J (1)ρ
µν + J (2)ρ

µν . (23)

The first one, J (1)ρ
µν , arises from the contraction of the

NN -meson vertices with −gαβ in the meson propagator
appearing in (21). For example, Jleft is obtained by the
following substitution in (16) (and similarly for Jright):

V = gγα − f

2m
σα
′αi(k1 − k′1 − ωϕ(τ, τ ′))α′ , (24)

V c → gγα +
f

2m
σβ′αi(k1 − k′1 − ωϕ(τ, τ ′))β

′
. (25)

The vertex V c is given by (25) with a minus sign; this
sign is compensated by the minus from −gαβ , what gives
the substitution (25). In (24,25) we introduce the function,
which takes into account the condition (22):

ϕ(τ, τ ′) =
{

τ, if x > x′

−τ ′, if x < x′
(26)

Since the vertex V c appears multiplied on the left by
(k̂1−m) and on the right by (k̂′1−m), it can be transformed
into:

V c → (g + f)γα −
f

2m
(k1 + k′1)α − i

f

2m
σβ′αω

β′ϕ(τ, τ ′)

(27)
The second item J

(2)ρ
µν in (23) arises from the contrac-

tion of the vertices with the factor (k − ωτ1)α(k − ωτ1)β
in (21). It is given by (16) with the following vertices

V → g

µ
(k̂1 − k̂′1), V c → g

µ
ω̂ϕ(τ, τ ′). (28)

The other terms, like the term proportional to ω̂, do
not contribute to the upper vertex, since being multiplied
by ω̂ from the contact term it gives zero. The difference
k̂1− k̂′1 in the lower vertex appears in the expression (k̂1−
m)(k̂1−k̂′1)(k̂′1−m) = 0 and, hence, does not contribute as
well. The minus sign from Ucγ

t
βUc = −γβ is incorporated

in the function (26).
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